Copied to
clipboard

G = C22⋊(He3⋊C4)  order 432 = 24·33

The semidirect product of C22 and He3⋊C4 acting via He3⋊C4/He3⋊C2=C2

non-abelian, soluble

Aliases: C22⋊(He3⋊C4), C3.(C62⋊C4), He32(C22⋊C4), He3⋊C2.5D4, (C22×He3)⋊1C4, (C2×He3⋊C4)⋊2C2, C2.7(C2×He3⋊C4), C6.29(C2×C32⋊C4), (C2×He3⋊C2)⋊3C4, (C2×C6).2(C32⋊C4), (C2×He3).7(C2×C4), (C22×He3⋊C2).3C2, (C2×He3⋊C2).10C22, SmallGroup(432,279)

Series: Derived Chief Lower central Upper central

C1C3C2×He3 — C22⋊(He3⋊C4)
C1C3He3He3⋊C2C2×He3⋊C2C2×He3⋊C4 — C22⋊(He3⋊C4)
He3C2×He3 — C22⋊(He3⋊C4)
C1C6C2×C6

Generators and relations for C22⋊(He3⋊C4)
 G = < a,b,c,d,e,f | a2=b2=c3=d3=e3=f4=1, faf-1=ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ece-1=cd-1, fcf-1=cde, de=ed, df=fd, fef-1=ce-1 >

Subgroups: 701 in 115 conjugacy classes, 17 normal (13 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, C23, C32, C12, D6, C2×C6, C2×C6, C22⋊C4, C3×S3, C3×C6, C2×C12, C22×S3, C22×C6, He3, S3×C6, C62, C3×C22⋊C4, He3⋊C2, He3⋊C2, C2×He3, C2×He3, S3×C2×C6, He3⋊C4, C2×He3⋊C2, C2×He3⋊C2, C22×He3, C2×He3⋊C4, C22×He3⋊C2, C22⋊(He3⋊C4)
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, C32⋊C4, C2×C32⋊C4, He3⋊C4, C62⋊C4, C2×He3⋊C4, C22⋊(He3⋊C4)

Smallest permutation representation of C22⋊(He3⋊C4)
On 36 points
Generators in S36
(2 7)(4 11)(6 9)(14 17)(16 19)(21 33)(23 35)(26 29)(28 31)
(1 8)(2 7)(3 12)(4 11)(5 10)(6 9)(13 20)(14 17)(15 18)(16 19)(21 33)(22 34)(23 35)(24 36)(25 32)(26 29)(27 30)(28 31)
(1 25 13)(2 35 26)(3 36 27)(4 14 33)(5 15 34)(6 28 16)(7 23 29)(8 32 20)(9 31 19)(10 18 22)(11 17 21)(12 24 30)
(1 3 5)(2 4 6)(7 11 9)(8 12 10)(13 27 34)(14 28 35)(15 25 36)(16 26 33)(17 31 23)(18 32 24)(19 29 21)(20 30 22)
(1 25 27)(3 36 34)(5 15 13)(8 32 30)(10 18 20)(12 24 22)(14 28 35)(16 33 26)(17 31 23)(19 21 29)
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)

G:=sub<Sym(36)| (2,7)(4,11)(6,9)(14,17)(16,19)(21,33)(23,35)(26,29)(28,31), (1,8)(2,7)(3,12)(4,11)(5,10)(6,9)(13,20)(14,17)(15,18)(16,19)(21,33)(22,34)(23,35)(24,36)(25,32)(26,29)(27,30)(28,31), (1,25,13)(2,35,26)(3,36,27)(4,14,33)(5,15,34)(6,28,16)(7,23,29)(8,32,20)(9,31,19)(10,18,22)(11,17,21)(12,24,30), (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,27,34)(14,28,35)(15,25,36)(16,26,33)(17,31,23)(18,32,24)(19,29,21)(20,30,22), (1,25,27)(3,36,34)(5,15,13)(8,32,30)(10,18,20)(12,24,22)(14,28,35)(16,33,26)(17,31,23)(19,21,29), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)>;

G:=Group( (2,7)(4,11)(6,9)(14,17)(16,19)(21,33)(23,35)(26,29)(28,31), (1,8)(2,7)(3,12)(4,11)(5,10)(6,9)(13,20)(14,17)(15,18)(16,19)(21,33)(22,34)(23,35)(24,36)(25,32)(26,29)(27,30)(28,31), (1,25,13)(2,35,26)(3,36,27)(4,14,33)(5,15,34)(6,28,16)(7,23,29)(8,32,20)(9,31,19)(10,18,22)(11,17,21)(12,24,30), (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,27,34)(14,28,35)(15,25,36)(16,26,33)(17,31,23)(18,32,24)(19,29,21)(20,30,22), (1,25,27)(3,36,34)(5,15,13)(8,32,30)(10,18,20)(12,24,22)(14,28,35)(16,33,26)(17,31,23)(19,21,29), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36) );

G=PermutationGroup([[(2,7),(4,11),(6,9),(14,17),(16,19),(21,33),(23,35),(26,29),(28,31)], [(1,8),(2,7),(3,12),(4,11),(5,10),(6,9),(13,20),(14,17),(15,18),(16,19),(21,33),(22,34),(23,35),(24,36),(25,32),(26,29),(27,30),(28,31)], [(1,25,13),(2,35,26),(3,36,27),(4,14,33),(5,15,34),(6,28,16),(7,23,29),(8,32,20),(9,31,19),(10,18,22),(11,17,21),(12,24,30)], [(1,3,5),(2,4,6),(7,11,9),(8,12,10),(13,27,34),(14,28,35),(15,25,36),(16,26,33),(17,31,23),(18,32,24),(19,29,21),(20,30,22)], [(1,25,27),(3,36,34),(5,15,13),(8,32,30),(10,18,20),(12,24,22),(14,28,35),(16,33,26),(17,31,23),(19,21,29)], [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)]])

38 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D4A4B4C4D6A6B6C6D6E6F6G6H6I···6N6O6P12A···12H
order12222233334444666666666···66612···12
size1129918111212181818181122999912···12181818···18

38 irreducible representations

dim111112334446
type+++++++
imageC1C2C2C4C4D4He3⋊C4C2×He3⋊C4C32⋊C4C2×C32⋊C4C62⋊C4C22⋊(He3⋊C4)
kernelC22⋊(He3⋊C4)C2×He3⋊C4C22×He3⋊C2C2×He3⋊C2C22×He3He3⋊C2C22C2C2×C6C6C3C1
# reps121222882244

Matrix representation of C22⋊(He3⋊C4) in GL5(𝔽13)

120000
41000
00100
00010
00001
,
120000
012000
00100
00010
00001
,
10000
01000
00001
00300
00090
,
10000
01000
00900
00090
00009
,
10000
01000
00100
00090
00003
,
84000
05000
00393
00113
00311

G:=sub<GL(5,GF(13))| [12,4,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[12,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,9,0,0,1,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,9,0,0,0,0,0,3],[8,0,0,0,0,4,5,0,0,0,0,0,3,1,3,0,0,9,1,1,0,0,3,3,1] >;

C22⋊(He3⋊C4) in GAP, Magma, Sage, TeX

C_2^2\rtimes ({\rm He}_3\rtimes C_4)
% in TeX

G:=Group("C2^2:(He3:C4)");
// GroupNames label

G:=SmallGroup(432,279);
// by ID

G=gap.SmallGroup(432,279);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,28,141,3924,298,5381,2539,537]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^3=d^3=e^3=f^4=1,f*a*f^-1=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,e*c*e^-1=c*d^-1,f*c*f^-1=c*d*e,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^-1>;
// generators/relations

׿
×
𝔽