Aliases: C22⋊(He3⋊C4), C3.(C62⋊C4), He3⋊2(C22⋊C4), He3⋊C2.5D4, (C22×He3)⋊1C4, (C2×He3⋊C4)⋊2C2, C2.7(C2×He3⋊C4), C6.29(C2×C32⋊C4), (C2×He3⋊C2)⋊3C4, (C2×C6).2(C32⋊C4), (C2×He3).7(C2×C4), (C22×He3⋊C2).3C2, (C2×He3⋊C2).10C22, SmallGroup(432,279)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — He3 — He3⋊C2 — C2×He3⋊C2 — C2×He3⋊C4 — C22⋊(He3⋊C4) |
Generators and relations for C22⋊(He3⋊C4)
G = < a,b,c,d,e,f | a2=b2=c3=d3=e3=f4=1, faf-1=ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ece-1=cd-1, fcf-1=cde, de=ed, df=fd, fef-1=ce-1 >
Subgroups: 701 in 115 conjugacy classes, 17 normal (13 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, C23, C32, C12, D6, C2×C6, C2×C6, C22⋊C4, C3×S3, C3×C6, C2×C12, C22×S3, C22×C6, He3, S3×C6, C62, C3×C22⋊C4, He3⋊C2, He3⋊C2, C2×He3, C2×He3, S3×C2×C6, He3⋊C4, C2×He3⋊C2, C2×He3⋊C2, C22×He3, C2×He3⋊C4, C22×He3⋊C2, C22⋊(He3⋊C4)
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, C32⋊C4, C2×C32⋊C4, He3⋊C4, C62⋊C4, C2×He3⋊C4, C22⋊(He3⋊C4)
(2 7)(4 11)(6 9)(14 17)(16 19)(21 33)(23 35)(26 29)(28 31)
(1 8)(2 7)(3 12)(4 11)(5 10)(6 9)(13 20)(14 17)(15 18)(16 19)(21 33)(22 34)(23 35)(24 36)(25 32)(26 29)(27 30)(28 31)
(1 25 13)(2 35 26)(3 36 27)(4 14 33)(5 15 34)(6 28 16)(7 23 29)(8 32 20)(9 31 19)(10 18 22)(11 17 21)(12 24 30)
(1 3 5)(2 4 6)(7 11 9)(8 12 10)(13 27 34)(14 28 35)(15 25 36)(16 26 33)(17 31 23)(18 32 24)(19 29 21)(20 30 22)
(1 25 27)(3 36 34)(5 15 13)(8 32 30)(10 18 20)(12 24 22)(14 28 35)(16 33 26)(17 31 23)(19 21 29)
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)
G:=sub<Sym(36)| (2,7)(4,11)(6,9)(14,17)(16,19)(21,33)(23,35)(26,29)(28,31), (1,8)(2,7)(3,12)(4,11)(5,10)(6,9)(13,20)(14,17)(15,18)(16,19)(21,33)(22,34)(23,35)(24,36)(25,32)(26,29)(27,30)(28,31), (1,25,13)(2,35,26)(3,36,27)(4,14,33)(5,15,34)(6,28,16)(7,23,29)(8,32,20)(9,31,19)(10,18,22)(11,17,21)(12,24,30), (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,27,34)(14,28,35)(15,25,36)(16,26,33)(17,31,23)(18,32,24)(19,29,21)(20,30,22), (1,25,27)(3,36,34)(5,15,13)(8,32,30)(10,18,20)(12,24,22)(14,28,35)(16,33,26)(17,31,23)(19,21,29), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)>;
G:=Group( (2,7)(4,11)(6,9)(14,17)(16,19)(21,33)(23,35)(26,29)(28,31), (1,8)(2,7)(3,12)(4,11)(5,10)(6,9)(13,20)(14,17)(15,18)(16,19)(21,33)(22,34)(23,35)(24,36)(25,32)(26,29)(27,30)(28,31), (1,25,13)(2,35,26)(3,36,27)(4,14,33)(5,15,34)(6,28,16)(7,23,29)(8,32,20)(9,31,19)(10,18,22)(11,17,21)(12,24,30), (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,27,34)(14,28,35)(15,25,36)(16,26,33)(17,31,23)(18,32,24)(19,29,21)(20,30,22), (1,25,27)(3,36,34)(5,15,13)(8,32,30)(10,18,20)(12,24,22)(14,28,35)(16,33,26)(17,31,23)(19,21,29), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36) );
G=PermutationGroup([[(2,7),(4,11),(6,9),(14,17),(16,19),(21,33),(23,35),(26,29),(28,31)], [(1,8),(2,7),(3,12),(4,11),(5,10),(6,9),(13,20),(14,17),(15,18),(16,19),(21,33),(22,34),(23,35),(24,36),(25,32),(26,29),(27,30),(28,31)], [(1,25,13),(2,35,26),(3,36,27),(4,14,33),(5,15,34),(6,28,16),(7,23,29),(8,32,20),(9,31,19),(10,18,22),(11,17,21),(12,24,30)], [(1,3,5),(2,4,6),(7,11,9),(8,12,10),(13,27,34),(14,28,35),(15,25,36),(16,26,33),(17,31,23),(18,32,24),(19,29,21),(20,30,22)], [(1,25,27),(3,36,34),(5,15,13),(8,32,30),(10,18,20),(12,24,22),(14,28,35),(16,33,26),(17,31,23),(19,21,29)], [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 3D | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | ··· | 6N | 6O | 6P | 12A | ··· | 12H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 12 | ··· | 12 |
size | 1 | 1 | 2 | 9 | 9 | 18 | 1 | 1 | 12 | 12 | 18 | 18 | 18 | 18 | 1 | 1 | 2 | 2 | 9 | 9 | 9 | 9 | 12 | ··· | 12 | 18 | 18 | 18 | ··· | 18 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 4 | 4 | 4 | 6 |
type | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C4 | C4 | D4 | He3⋊C4 | C2×He3⋊C4 | C32⋊C4 | C2×C32⋊C4 | C62⋊C4 | C22⋊(He3⋊C4) |
kernel | C22⋊(He3⋊C4) | C2×He3⋊C4 | C22×He3⋊C2 | C2×He3⋊C2 | C22×He3 | He3⋊C2 | C22 | C2 | C2×C6 | C6 | C3 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 2 | 8 | 8 | 2 | 2 | 4 | 4 |
Matrix representation of C22⋊(He3⋊C4) ►in GL5(𝔽13)
12 | 0 | 0 | 0 | 0 |
4 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 9 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 9 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 3 |
8 | 4 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 |
0 | 0 | 3 | 9 | 3 |
0 | 0 | 1 | 1 | 3 |
0 | 0 | 3 | 1 | 1 |
G:=sub<GL(5,GF(13))| [12,4,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[12,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,9,0,0,1,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,9,0,0,0,0,0,3],[8,0,0,0,0,4,5,0,0,0,0,0,3,1,3,0,0,9,1,1,0,0,3,3,1] >;
C22⋊(He3⋊C4) in GAP, Magma, Sage, TeX
C_2^2\rtimes ({\rm He}_3\rtimes C_4)
% in TeX
G:=Group("C2^2:(He3:C4)");
// GroupNames label
G:=SmallGroup(432,279);
// by ID
G=gap.SmallGroup(432,279);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,28,141,3924,298,5381,2539,537]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^3=d^3=e^3=f^4=1,f*a*f^-1=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,e*c*e^-1=c*d^-1,f*c*f^-1=c*d*e,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^-1>;
// generators/relations